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 Abstract
Telecommunication systems are rapidly increasing in design complexity, while design time is

shortening. Currently, each hardware component in these systems is specified, using hardware description

languages. At this level, code is hard to read, modify/maintain, and reuse. In addition, simulation speed is

a limiting factor for validation. To overcome these limitations we have developed the Matisse language

and its underlying model. This paper presents Matisse, a concurrent object-oriented system specification

language, well suited for telecom applications. The applicability of the Matisse language and the

effectiveness of its underlying model is demonstrated by the results obtained for two industrial applications

used in ATM networks.  Moreover, Matisse allows design exploration of alternatives and dynamic memory

management refinement which are incorporated in a methodology that bridges the gap between system

specification and synthesis tools commercially available.

1 Introduction
Telecom network applications include system components for ATM based broadband

networks, SONET and SDH based networks [32], mobile network infrastructures and interactive

video-on-demand servers. These applications are among the fastest growing segments of the

system industry today.

Modern telecommunication systems are rapidly increasing in design complexity to be able to

support a wide variety of broadband multimedia services. In order to enable these services,

elaborated network management is needed.

Implementation of telecom systems into a single chip hardware/software solution is no longer a

problem from the technological viewpoint (e.g. [25]). Nowadays, the challenge is to design such electronic

systems fast, efficiently, and first-time right. The realization of complex systems is becoming design
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limited instead of technology limited.

Currently, there is an urgent need for  (1) innovations in models and implementation-

independent validation techniques at the system level and (2) coherent system design

methodologies to bridge the gap from the system-level specification down to the low-level

hardware and software development, using existing tool chains.  This paper focuses on the first

issue to be able to couple with a system design flow called the Matisse methodology [14, 16].

In the broad domain of telecommunication systems, we focus on protocol processing

applications. These applications present several design challenges due to their characteristics and

design constraints. They require manipulation of large amounts of irregular data that are

dynamically created and destroyed at run time. They are characterized by tight interaction

between control and data-flow behavior, intensive data transfers, and stringent real-time

requirements. Due to area, power, performance and flexibility constraints, the physical to

transport layers of these applications are usually (partly) realized in hardware or embedded

software [48].

Protocol processing systems are extremely complex and they must be modeled, debugged, and

simulated at a high-level of abstraction, before proceeding to implementation. A system specification

language and its underlying model, well-suited to specify protocol processing systems must be independent

from the final implementation, permit easy updating and efficient design exploration, allow successive

refinements, and be easily retargetable to different embedded hardware/software realizations.

This paper presents two major contributions: (1) a system specification language, that supports

high-level specification of protocol processing applications, and (2) its underlying model, that

enables functional validation and is used as input to the exploration path.

The remainder of this paper is organized as follows. First, Section 2 gives the context and

motivation for our work. Then, Section 3 presents relevant related work. Section 4 presents the

main requirements that must be supported for our target domain, illustrated through an actual

application example. Section 5 describes the Matisse language and model in a detailed way.

Section 6 gives an overview of our hardware/software design flow. Section 7 presents

specification and simulation results for two industrial  applications. Finally, Section 8 presents the

main conclusions.

2 Context and Motivation
Currently in industry, protocol-processing applications are designed starting from a document,

written in the natural English language, which is often widely open for ambiguous interpretations.

Then the system is partitioned into hardware and software components. These components are

designed concurrently and independently from each other trying to minimize time to market.
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Each software component is usually specified using SDL[42]. C or C++ code can then be

automatically generated and compiled in machine instructions for the target processor. Run-time

support is added for managing concurrency, by making use of functionalities such as task

scheduling and interprocessor communication, offered by real-time microkernels [49] based on

pre-defined architectures.

Each hardware component is manually specified as a finite state machine,  using hardware

description languages such as VHDL or Verilog [48]. Then a detailed implementation is produced

by logic synthesis and technology mapping. The specification of each hardware component is

done at the Register Transfer Level (RTL). However, RTL code is hard to read, modify/maintain

and reuse. The code is already refined with detailed clock  cycles, and specific architectural

decisions are already fixed. Small changes at the system level often require very substantial

changes in the hardware or software specifications of the components. Recently, the industry has

started to use behavioral synthesis,  but this only solves subproblems in the complete design flow,

such as  resource allocation and scheduling, register  assignment and optimization, and data-path

interconnection.

Since hardware and software components are realized independently from each other,  this

often introduces both specification and implementation mismatches, which are only detected at

the final stages of the system design [23]. Moreover, system validation by executing these

software and hardware specifications is time-consuming due to the vast amount of low-level

details. Currently, the system integration and test phases take a major part  of the complete system

design [2].

Beyond that, due to the low level of entry in the currently used design flow,  exploration of

different alternatives is nearly impossible.  Instead of exploring the design space to find the

optimal solution, most design  decisions are taken locally, based on previous designer experience.

Exploring different HW/SW partitions and different data structures implementations  would imply

respecifying the component.

In future implementations of similar systems, functionalities of several processors will be

integrated into a single VLSI chip, and some functionalities previously implemented in hardware

will migrate to software, exploiting the increasing processing performance of emerging embedded

microprocessor cores and enabling more flexible systems to be developed.  Using the current

design methodology, this is only feasible respecifying and reimplementing the complete

component.

3 Related Work
Related work is divided in two parts: work done in the software community and  work done in
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the hardware community.

3.1 Software community
Distributed programming languages have been proposed for programming general-purpose

multiprocessor systems or  distributed networks of workstations [7, 10, 37, 43]. While their

underlying models are related to our Matisse model,  their implementation targets are different:

they rely on elaborate run-time environments and are intended for pure software implementations.

In contrast, our implementation target is  intended for optimized embedded single-chip

hardware/software realizations.

Several concurrent object-oriented (OO) languages extended from C++ exist. C** [34],

Composites [9], Dome [3],  DPC++ [22], Mentat [47], and QPC++ [4]  are languages intended for

specification of data level concurrency, while our goal is the specification of task level

concurrency. CC++ [10], DC++ [8], DoPVM [28], and Presto [20] have either syntax extensions

or library extensions in  order to allow the specification of task level concurrency.  However, they

are based on large run-time environments intended for running on  workstations, while our target

is an embedded realization with minimum run-time  support.

Some other extensions of C++, such as Charm++ [31],  Concurrent C++ [21], and Panda [1],

encapsulate tasks into communicating active objects. This type of languages seems to be the most

appropriate to introduce concurrency  into C++ without breaking the basic principles of object

orientation, such as  encapsulation.  However,  Charm++ allows various dynamic load-balancing

strategies enlarging the run-time  needed to support it.  Concurrent C++ uses a centralized

synchronization mechanism  that makes it very hard to use the inheritance mechanism available in

C++ for  active objects.  Panda allows different synchronization mechanisms such as monitors and

semaphores. By enabling to mix synchronization mechanisms, both design task  and verification

task, e. g. deadlock detection, will be much more difficult  to be implemented. Panda also allows

dynamic migration of tasks from one processor to another  enlarging the run-time needed to

support it.

Our own proposal will be based on principles adopted in CC++ (see Section 5). However, we

merge  the active object concept with CC++ in an attempt to obtain a language that has  the

advantage of both approaches. We also introduce simplifications in CC++ in order  to avoid a

large run-time environment.

3.2 Hardware community
Several approaches exist focusing on modeling of embedded hardware/software.

The hierarchical FSM model  is a powerful formalism for reactive control behaviors, but it
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does not support well abstract data structures and OO features. Approaches intended for reactive

control systems, such as Statemate [26] from iLogix, SpecCharts [40], Cosyma [19], and Esterel

[27] lack support for data storage and transfers.

Heterogeneous design environments, like Ptolemy [6] and  CoWare [5, 13], aim to provide an

open environment to  smoothly integrate different models of computation.

Most system-level research and CAD innovations today are focussed on Digital  Signal

Processing (DSP) applications  (e.g. [6, 35, 36]). Commercial tools include SPW [46] from

Alta/Cadence, COSSAP [12] from Synopsys,  Monet [39] from Mentor Graphics, and  DSP

Station [18] from Frontier Design.

Protocol processing applications require manipulation of complex data structures that are often

dynamically created and destroyed at run time, as opposed to the static signal flow present in DSP

applications.   Most DSP models are also not well-suited for control-oriented data processing

behaviors found in protocol processing applications that heavily rely on tight interactions between

control-flow algorithms and stored data structures. Due to many differences in nature between

these application domains, system models should be domain-specific.

SDL has been used for specification of protocol processing applications in [45]. However, the

crucial exploration of different dynamic memory management alternatives is  unfeasible using this

approach.

Related work on system synthesis for  protocol processing applications has been dealing with

different aspects, e.g., solving timing constraints [33] and memory allocation for minimizing

memory interface traffic during HW/SW partitioning [30].  However, they have not dealt with

languages or models for our target domain.

4 Specification Requirements
This section presents an actual protocol processing application used in telecom networks. This

case study is used to illustrate the requirements  to be supported by the Matisse language.

ATM [41] is a fast packet-switching transfer mode that supports high-speed integrated

services by splitting all communication messages into equal 53-byte cells, called ATM cells.

These cells can  carry any kind of information, be it computer data, video, or voice.   In addition,

ATM networks are characterized by a connection-oriented mode of operation.

One representative case study is an actual industrial ATM based broadband network

application developed by Alcatel. This application is a user transparent connectionless router

called Alcatel Connectionless Transport Server (ACTS) [48] that provides the necessary functions

for the direct provision and support of data communication between geographically distributed

computers or between LANs over an ATM based broadband network.
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In its current implementation, the ACTS consists of several boards, each one consisting of

several processors and coprocessors, implemented as custom ASICs, and a programmable

supervising microprocessor for executive control. A concrete example of one of those ASICs,

named Segment Protocol Processor (SPP) [48], is used to demonstrate the requirements to be

supported by the Matisse language.

The SPP can be described as a set of concurrent tasks that cooperate with each other through

the shared data structures, as shown in Figure 1. More details about these tasks can be found in

[48, 15]. These tasks have to be performed for each incoming frame, consisting of 4 ATM cells, at

a frame rate of 622 Mbit/s. These tasks are combined, in order to satisfy design constraints, such

as high memory bandwidth.

Figure 1: SPP task level diagram

The SPP stores and forwards user cells, performs a number of checks by itself, issues requests

to other coprocessors to perform other checks, issues a request for routing and  processes routing

replies.  The algorithms, implementing the SPP functionality, make use of ADTs, shown in Figure

2. The top of the figure  shows a queue, where incoming user cells are buffered. Packet records

are accessed through two keys:   the local (LID) and  multiplexing (MID) identifiers. A packet

record contains various fields, such as the number of cells received so far, the time the first cell

was received and a pointer to a list of routing records. In the target implementation, these ADTs

are refined through the DMM  refinement mentioned in Section 6.

Figure 2: SPP data organization

The shared data structures, such as the packet records and the FIFO, are used in the SPP as a

communication mechanism between the six tasks. These tasks may operate concurrently, while

respecting ordering dependencies. For instance, a cell is first stored in the FIFO. Then fields are

updated in the respective packet record. Afterwards, depending on the type of cell, and after an

observation time, an ISR request is generated.

Other ASICs used in the ACTS, such as the Packet Handler Processor and the  Preventive

Congestion Control processor and other network components may be described  in a similar way,

by means of a set of cooperative tasks operating on shared data  structures.

In summary, the main characteristics of protocol processing applications are the  following:

1. they manipulate large amounts of data, which are shared among tasks,

2. they perform a lot of data transfers,

3. they have coarse grain concurrency, defined by tasks, in which control constructs,

such as if-then-else, for and while loops, are essential for capturing the algorithmic

behavior of each task,

4. they have a small data arithmetic part,
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5. they operate under real-time constraints, and

6. they target an embedded solution, in which power and area are crucial.

5 Matisse Language and Model
While an OO model is not necessary in principle, it has been proven successful to enable

maintainability and code reuse in the software design  community, and it also plays a central role

in large-scale hardware/software system design. Object-oriented languages concentrate on the

real-world entities identified in the application, which are tasks for accessing data in protocol

processing applications.

Object-oriented languages support data abstraction, encapsulation, polymorphism,  function

overloading and inheritance, which are invaluable features in any large-scale development. With

these abstraction facilities, implementation  decisions and low-level specification details can be

hidden or easily updated, allowing easy and fast design exploration.  For instance, shared data

structures may be initially specified as ADTs that will be refined later in the design flow.

Although the OO paradigm may incur design overhead, by restricting the system specification

language and by automating the system design flow, these inefficiencies are minimized.

Since concurrent tasks to be executed on more than one processor need to be  modeled,

concurrent OO models are well suited to model  protocol processing applications. Objects can

encapsulate tasks as well as (shared) data structures. Remote procedure calls can encapsulate

intertask communications. Consequently, a system specification language that supports a

concurrent OO model is well suited for specifying protocol-processing applications.

The system specification language must also have the following characteristics:  reflect the

conceptual partitioning of the system, seen as a set of concurrent tasks for accessing data; be

independent from the final implementation; permit easy updating and efficient design exploration;

and be easily retargetable to different embedded hardware/software realizations.  This contrasts

with current system specification practices which are using VHDL for specifying the hardware

processors, and C/C++ for specifying the software processors, or SDL and UML, which are too

high-level for this target domain and  do not provide the necessary hooks for efficient design

realization and  exploration.

From the previous requirements, we have decided to follow a concurrent  object-oriented approach for

the system specification of protocol processing applications. Therefore, the Matisse language is extended

from the widely used OO programming language C++.  We introduce minimal syntactic extensions to C++

to allow the description of concurrent tasks, communication and synchronization among them.

Compatibility with C++ enables new users already familiar with C++ to be productive in a very short

amount of time. In addition, existing debugging and compilation tools can be easily adapted for early
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functional validation of the system specification. Finally, this enables us to leverage the wide corpus of

existing software compilation and run-time support tools for our software implementation path. This is

important since software implementation represents a substantial part of many of our target applications.

There are many concurrent OO programming languages  extended from C++. All of them are

intended for specifying systems  consisting of concurrent programs, running on a network of

workstations. Compilers for those languages generate C++ programs  with calls to an elaborate

run time Operating System (OS) designed  for software processors only. Matisse is intended for

specifying systems at the chip level instead. These systems consist of concurrent tasks, running on

a mixture of  embedded software and hardware processors. To be efficiently implementable in

both hardware and software processors, the OS used by the specification language should offer

only minimum support  for task scheduling, interprocessor communication and synchronization.

More precisely, the Matisse language uses some of the high-level abstractions existing in

Compositional C++ (CC++) [10]. CC++ is a concurrent OO language extended from C++ using

only a few new keywords. Simplifications were introduced, taking into account the requirements

introduced in Section 4 and also taking into account that systems specified with Matisse must be

synthesized into a hardware/software codesign at the chip level. The OS requirements for CC++

(and similar languages discussed in Section 3) would be too costly to use in an embedded

codesign context.

In protocol-processing applications, the user needs to specify  concurrency only at the task

level. In contrast to CC++  that allows the user to specify concurrency at all levels,  from fine

grain to task level concurrency,  Matisse allows the specification of concurrency only at task

level.

In CC++, both thread and local virtual memory space concepts are separated. To model tasks,

Matisse allows to create  active objects. Together, these objects encapsulate a local  virtual

memory space and define a default thread of control, that is initiated at  the creation of the active

object.  Due to these restrictions, the complexity of the run time support can be  reduced in a

major way.

Similar to CC++, communication between tasks is abstracted,  without explicit specification of

communication channels and an RPC mechanism is used to implement it. In CC++, data may be

remotely accessed directly. In Matisse, data inside an active object are remotely accessed only

through a pointer to the active object itself. Due to the simplified communication mechanism,

instead of  providing two synchronization mechanisms as in CC++, Matisse  only needs one

synchronization mechanism.
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Now the different concepts in Matisse are explained in more detail1. The concepts are

illustrated  using simplified code for the SPP driver application.

10   int main (int argc, char**argv) {
11      packet_record_mngr* global pr;  // shared data
12      cell_fifo_mngr* global cf;      // shared data
13      data_in* global di;             // task
14      data_out* global do;            // task
15
16      pr = activenew packet_record_mngr();
17      cf = activenew cell_fifo_mngr();
18      di = activenew data_in(pr,cf);
19      do = activenew data_out(pr,cf);
20   }

30   active class data_in {
31      cell_record* cell;
32      packet_record* packet;
33   public:
34      data_in ();
35      void body (packet_record_mngr *global pr,// packet_record_mngr,
36                 cell_fifo_mngr *global cf,    // cell_fifo_mngr, and
37                 input *global input){         // input are active classes
38                                               // pr, cf, and input are active objects
39          cell = input->get();         // get a cell from the input
40          switch (cell->type()) {
41             case BOM:                 // cell is Begin Of Message
42                 packet = pr->alloc(); // create a new packet record
43                 //SOME BEHAVIOR
44                 pr->put(packet);      // store packet info into pr
45                 cf->enqueue(cell);    // store cell in the fifo
46              case COM:                // cell is Continuation Of Message
47                 packet = pr->get();   // use an existing packet record
48                 // SOME BEHAVIOR      // retrieved from pr
49                 pr->put(packet);      // store packet info into pr
50                 cf->enqueue(cell);    // store cell in the fifo
51           }
52       };
53   };

60   active class packet_record_mngr {
61       packet_record *head, *tail;
62   public:
63       packet_record_mngr ();              // initialize head and tail
64       atomic packet_record* alloc ();     // create a new packet record
65       atomic packet_record* get ();       // get a packet record from the list
66       atomic void put (packet_record*);   // put a packet record in the list
67   };

5.1 Granularity of concurrency
The concurrency explicit in the specification of an application may  vary from none to

completely specified.  According to the level of details present in the specification, three different

levels are distinguished: abstract concurrency, explicit concurrency,  and explicit decomposition

into threads.

The definition of the concurrent tasks to be performed by the application is evident  from the

functionality, for dynamic data-dominated applications such as the SPP. Therefore, coarse grain

                                                     
1Timing specification is still under investigation and it will not be presented in this paper.
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concurrency in the specification is explicit in Matisse. However, finer grain concurrency (threads)

is more difficult to be identified by the  designer and is left implicit.

Each task is specified by means of an active object in Matisse (lines 30-52 in SPP code). Each

active object specified in the application has its own thread of control.  These active objects are

concurrent. However, the internal concurrency in an object  is implicit. This means that it is not

necessary to specify the number of  concurrent threads in an active object.

5.2 Level of concurrency
In case of the specification of concurrency using concurrent objects,  a range of possibilities

exists for specifying the concurrency inside an object. The concurrency existent internally to an

object in the specification of  an application may vary from no concurrency to full concurrency.

According to the concurrency present inside an object,  three different levels are distinguished:

sequential, quasi-concurrent, and fully concurrent.

Fully concurrent objects  are used in Matisse because they allow exploration of different

alternative  implementations. A concurrent object can be mapped to a more sequential or more

concurrent implementation, according to a given cost function (e.g.: area, power). However, the

most concurrent implementation of an active object is sometimes the only  solution that enables to

achieve the real-time requirements for dynamic data-dominated  applications.

5.3 Concurrency type
To model different types of concurrency, such as data  concurrency or task concurrency,

different languages exist. In object-oriented languages, three possibilities for modeling

concurrency are available: concurrent tasks, concurrent data, and  active objects.

Dynamic data-dominated applications, such as the SPP, are best suited to be  specified as a set

of tasks operating on shared abstract data types. These tasks can be modeled as concurrent tasks

or as active objects.  The latter is best suited for introducing concurrency into an object-oriented

language,  in which only coarse grain parallelism is explicit. This is true because the  latter

maintains the encapsulation principle, while the former does not. Therefore, an active object

model is used for modeling concurrency in  Matisse.

Active objects and passive objects co-exist in a heterogeneous active object model. An active

object is an instance of an active class. The specification of an active class is shown in lines 30-53

for the active class data_in in the SPP code.  An active object has its own local virtual memory

space and a default thread of  control, specified in the body method of an active class. The default

thread of  control of active object is exemplified in lines 35-51. A passive object is used to model

data, exactly as in C++.
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In the main function in a Matisse specification, first active objects are  created and then their

bodies are initiated using the keyword activenew. In the SPP example (line 16-19), four

concurrent active objects are shown: pr, cf, di, and do. Each one is an instance of a  different

active class in this example.

Active classes can inherit from base active classes, and the usual C++ protection mechanisms

apply. So private data elements and member functions of an active class can be used only by the

member functions of it. Public data elements and member functions constitute the interface to the

active objects of the active class.

5.4 Abstract memory architecture model
The memory architecture model defines the way the memory is organized, for example, a

centralized memory shared by all tasks or a  distributed memory with each task owning its local

memory. The term "abstract’’ is used because the memory architecture model defined here  refers

to the virtual memory and not to the actual memory.

An application can always be specified and implemented using  different models for the

abstract memory architecture. However,  depending on the nature of the application, it may be

best suited to be  specified in one of the models.

Dynamic data-dominated applications, such as the SPP, are better specified by a number of

shared abstract data types manipulated by a set of tasks. Some of these data types  are shared by a

set of tasks and some are local to one task. Therefore, an abstract distributed shared memory

architecture model has been implemented  in Matisse. This is illustrated by lines 11-14 in the SPP

code.

5.5 Communication between objects
During communication, two (or more in case of  broadcasted communication) partners are

involved: a sender  and a receiver. Here, the sender is the initiator of the communication

independently of the direction the data is being communicated.

Different communication alternatives can  be implemented, depending on whether the sender

or receiver "blocks’’ waiting for the partner in the communication. Note that any combination

sender/receiver with blocked/unblocked  communication is possible, although some of them do

not make sense.

Dynamic data-dominated applications are synchronous systems, in which a safe

implementation of communication is needed.  Therefore, blocked sender communication is used

in Matisse, as illustrated in.

Communication among active objects is performed  using global pointers. Global  pointer
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declarations are shown in lines  11-14, for the SPP example. The use of global pointers is shown

in lines 39, 42, 44, and 45 for the SPP  example. For instance, in line 42, the computation for the

method alloc  is executed in the active object pr.  The communication proceeds in three stages:

1. first, the arguments of the function alloc() are packed into a message, communicated to

the remote active object pr, unpacked and then the calling thread suspends execution,

2. next, a new thread is created in the remote active object to execute the called function,

and

3. finally, upon termination of the remote function alloc, the function return value is

transferred back to the calling thread which resumes execution.

Accessing data elements within an active object is regarded as local and hence cheap. A thread

executing in an active object can access its data elements directly, by using C++ pointers. In contrast to

data elements within an active object, active objects can be accessed  by each other using global pointers.

Except for their potentially higher cost of use, global pointers are used just like C++ pointers.

5.6 Synchronization mechanism
 Due to concurrent computations, several accesses to data  elements or member functions in an

active object can occur simultaneously in dynamic data-dominated applications, such as the SPP.

Therefore, these accesses have to be sequentialized.  This is the only type of synchronization

needed for this type of applications.

Several synchronization mechanisms can be used in concurrent object-oriented languages.

Four classes of synchronization mechanisms are briefly compared. State-based synchronization

mechanisms provide more than the minimal features and require  also a much more complex

compiler implementation.  Centralized synchronization mechanisms have a complete sequential

control flow of execution disabling more concurrent implementations. Explicit synchronization

mechanisms (e.g. semaphores) are hard to use and error prone,  requiring a lot of synchronization

code. A monitor-based synchronization mechanism provides enough fine grain synchronization

and enough synchronization capabilities, needed for dynamic data-dominated applications.

Therefore, in Matisse, a monitor-based synchronization mechanism is implemented.

In particular, atomic functions are used to specify the synchronization mechanism.  The

specification of atomic functions is exemplified in lines 64-66 for the SPP. Whenever several

threads call an atomic function, this function is executed  the required number of times in a

sequential order.   Also, the execution of an atomic function never interleaves with the execution

of  another atomic function of the same active object.

Member functions may be declared atomic in both active and passive classes. However, in

order to avoid deadlocks, some rules for defining atomic functions must be followed, such as:
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 · the body of an atomic function must terminate in a finite      time, implying that it may not

perform an RPC and that it may not call other atomic functions of its class;

· a body function running forever may not be declared atomic.

Using atomic functions instead of atomic objects helps the user to specify critical  sections that

must be as short as possible. In an object-oriented approach, each object (either active or passive)

is responsible for its own protection. In Matisse, this is still valid, but deciding which member

functions have to be declared atomic is currently left to the designer.

5.7 Language extension approach
Three alternatives for extending a sequential language exist: library-based, language syntax,

and hybrid.

The advantage of library-based extensions is that the standard compiler  for the sequential

language  is able to compile also the extensions contained in the libraries. Thus,  there is no effort

in building a compiler. Also, traditional tools (e.g.  debugger) for the sequential language keep on

working. However, in library-based extensions, it is not always possible to elegantly capture

concepts due to syntactical limitations of the sequential language. Moreover, in library-based

extensions global analysis is not  feasible, since in the internal representation (after compilation) it

is  impossible to recover the information about concurrency.

For dynamic data-dominated applications, such as the SPP, global analysis of concurrency,

communication, and abstract data types has to be performed. This  analysis enables exploration of

different implementation alternatives and selection of the best suited for a given cost function.

Since global analysis is essential, a syntax-based extension has been implemented.  In particular,

the keywords active, activenew, global, and atomic, have been used in the SPP code.

The implementation of a hybrid solution is also possible.  In this solution, first a library extension

approach is adopted.  Whenever global analysis is needed, a parser and semantical analyzer are used.

Instead of  parsing new keywords, as in the language extension approach, the classes  in the libraries have

to be parsed to create an internal representation keeping the concurrency information. This solution would

bring the huge benefit of enabling use of available tools (compilers, debuggers, etc.) for C++. However, the

parsing step still has to be done to enable global analysis. This is a subject for future implementation.

5.8 Processor mapping
Two alternatives exist for the mapping: explicit or implicit. In an explicit mapping, the

designer must specify the mapping, while in  an implicit mapping, the compiler defines the

mapping.

An evident grouping of tasks to be mapped into a processor can easily be done for dynamic
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data-dominated applications because the number of active objects is small.  Therefore, the

mapping of tasks into processors is explicit. For instance, the SPP has 11 active objects in total.

Excluding interfaces and testbench, there are only six active objects to be mapped to processors.

5.9 Run-time functionality
Dynamic data-dominated applications require run-time support for  task creation, task

scheduling, concurrency, monitor synchronization,  task communication and timing. The run-time

library Tipsy[11] has been used to implement  this functionality. The run-time support is

incorporated into the Matisse underlying  model by the Abstract Machine Generation step briefly

described in  Section 6.

6 Matisse Design Flow
The Matisse language (Section 5) is used as input to  the system design flow [16]. The abstract

machine model underlying the initial Matisse specification  is used for functional validation and it

facilitates design exploration due to its high-level of abstraction. The input to the design flow is a

system together with its environment   specified at the algorithmic level, using the Matisse

language.

The system design flow is automated in order to avoid specification and implementation

mismatches, to accommodate changes in the system specification, and to allow design

exploration. The functional specification should be validated already at the system level, without

executing both hardware and software low-level specifications, that are too time-consuming. This

allows extensive exploration of design alternatives, such as refinement of Abstract Data Types

(ADTs) into complex data structures  (heaps, hash tables, trees and linked lists),  refinement of the

virtual memory management, and memory access optimization and memory synthesis. Below, we

briefly present each step in the design flow. More details  can be found in [16].

Abstract machine generation -  The main goal is to obtain a library-based executable

specification, that reflects the underlying  Matisse model, called Abstract Machine (AM). The AM

is suitable for simulation, exploration, and refinement of the system specification. The AM allows

record access profiling for selecting optimized ADT implementations [51],  intertask

communication profiling for task concurrency management, and  virtual memory access profiling

for physical memory management [50].

Dynamic memory management (DMM) refinement -  The Matisse language allows the

designer to define sets of records as ADTs, without  low-level specification details. Protocol

processing applications are often characterized by algorithms that operate on large Data Structures

(DSs), which are dynamically allocated. When implementing these applications on a chip,
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efficient organization and implementation of sets of records [51] is crucial, and dynamic memory

allocation [17] must be handled efficiently in terms of  time and number of memory accesses.

Hence, both the specification of sets of  records and the memory management must be refined

before synthesis.

Task concurrency management - The goal of task concurrency management is to meet the

overall real-time requirements imposed to the application being designed, by making  decisions at

the task level without incorporating low-level operation  details yet. Currently performed

manually, a systematic methodology and the fully automation  of this step are under investigation

in our research.

Physical memory management for each processor - Typically, protocol-processing

applications require large storage capacities and very high I/0 bandwidth to achieve the  real-time

requirements. Distributed memory architectures allow exploiting parallelism,  thus alleviating

memory access bottlenecks. However, as the required  memory bandwidth increases, the cycle

budget constraints available for each access individually become tighter. This happens because

the number  of addresses that have to be generated in parallel per processed data  becomes higher,

thus leading to an addressing overhead. This step aims at synthesizing  area and power efficient

distributed memory architectures and memory  management units [38], [44], meeting the real-time

requirements. In the Matisse design flow, techniques have been developed for pure  HW

processors first, where the memory organization is fully customized. Further investigation aims at

extending the memory management steps  to heterogeneous HW and SW processors with a

partially predefined memory  organization.

Finally, software compilation proceeds using traditional software compilers, hardware

synthesis proceeds using High-Level Synthesis (HLS) tools and interface synthesis generates

SW device drivers for each SW processor and VHDL specifications of the necessary HW blocks

allowing communication between HW and SW processors. The interface synthesis is performed

using the system integration  toolbox CoWare [5] that also allows  cosimulation of the synthesized

system.

7 Results
This section presents the simulation  results for two applications: the SPP, already  used as an

example in this paper, and the F4 [29], an Operation And Maintenance (OAM) component at the

Virtual Path (VP) level of the ATM layer.

Simulation results include concurrent untimed, concurrent timed, and  sequential simulation,

for the SPP and F4. The exploration and synthesis results for the SPP can be found in [16] and  for

the F4 in [52].
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7.1 Case study: SPP
The complete specification of the SPP consists of 2535 lines of Matisse code. The part of the

Matisse libraries used for exploration for the SPP have 4376 lines  of Matisse code from which

1062 have been used for implementation of the SPP.

The SPP application has been simulated for 1000 ATM cells. The elapsed time for simulating

these cells is 1.5 seconds for the untimed concurrent specification written in Matisse.

After manually applied task concurrency management, a possible sequential specification

(already scheduled) of the SPP has been obtained. This simulation has taken an elapsed simulation

time of 0.8 seconds.

For an untimed concurrent specification, the simulation is about a factor of two slower than

the sequential simulation, for the SPP. However, it is better to start from the concurrent

specification from which we can derive different sequential specifications. This enables design

exploration of  different alternatives.

A concurrent timed simulation has not been done for the SPP because the relative  timing of

tasks is not part of the SPP specification.

7.2 Case study: F4
The complete specification of the F4 consists of 3559 lines of Matisse code. The part of

Matisse libraries used for exploration for the F4 have 3998 lines  of Matisse code, from which 894

have been used for the implementation of the F4.

The F4 performs functions such as fault management, performance monitoring,  fault

localization, and activation/deactivation of VP tasks. It is present on each physical link connected

to the ATM switch. To perform its functions, the F4 block deals with specially marked ATM

cells, called OAM cells. These cells are distinguished from user cells by  dedicated values for the

VP identifiers. All functions have to be performed  for each incoming ATM cell in 2734 ns.

The F4 application has been simulated for 1000 cycles (representing 2000 cells processed).

The elapsed time for simulating the processing of these cells is 15 seconds for the timed

concurrent specification written in Matisse.

After manual task concurrency management, a possible timed sequential specification (already

scheduled) of the F4 has been obtained. This  simulation has taken an elapsed time of 15 seconds.

For the F4 application, the simulation of the timed concurrent specification is as fast as the

sequential specification.

A concurrent untimed simulation has not been done for the F4 because the relative timing  of

tasks is part of the F4 specification. The functional validation and the timing  validation have been
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done together.

8 Conclusion
None of the existing languages and models has been designed for the  specification of hard

real-time dynamic data-dominated  applications, which should be realized in an embedded

solution,  except for the proposed Matisse language and its  underlying model.

In contrast to other languages and models,  the Matisse language and model combine the

following characteristics,  crucial for our target domain:

· they meet the requirements needed for concurrency, communication, synchronization;

· they target an embedded solution;

· they enable fast and effective functional validation;

· they are usable as input for exploration and refinement of the system specification;

· they allow profiling for dynamic memory management, task concurrency management,

and physical memory management.

Currently, we are investigating how to include timing  constraints in the system specification and

support them through the  system design flow to be able to handle other types of applications in the

network component domain.

In the near future, we want to show the applicability of our concurrent  OO approach on other

actual telecom and multimedia (e.g. MPEG4)  applications which also incorporate dynamically

created data types.
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Figure 1: SPP task level diagram
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Figure 2: SPP data organization
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